Title: | An API wrapper to interact with the UNHCR RIDL Platform |
---|---|
Description: | The package wraps functions to work with the RIDL API ridl.unhcr.org from R. |
Authors: | Edouard Legoupil [aut, cre], Matheus Soldi Hardt [aut], Hisham Galal [aut], UNHCR [cph] |
Maintainer: | Edouard Legoupil <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.0.5 |
Built: | 2025-01-03 05:15:12 UTC |
Source: | https://github.com/Edouard-Legoupil/riddle |
Provide a list of all child containers for a specific container
container_list(parent)
container_list(parent)
parent |
name of the container |
This function is used to generate a regional dashbaord.. Be carefull - it's an expansive functions at it needs to parse the entire content of the server....
uses https://docs.ckan.org/en/2.9/api/index.html#ckan.logic.action.get.organization_list
catalog of containers
# catalog <- container_list() # groups_name <- catalog |> # dplyr::select(groups_name) |> # dplyr::distinct()
# catalog <- container_list() # groups_name <- catalog |> # dplyr::select(groups_name) |> # dplyr::distinct()
Get an overview of accessible infos about all containers in RIDL Use https://docs.ckan.org/en/2.9/api/index.html#ckan.logic.action.get.organization_show
container_show(id)
container_show(id)
id |
id or name of the container |
a dataframe with container metadata
# americasdataset <- container_show( id = "americas-regional-dataset")
# americasdataset <- container_show( id = "americas-regional-dataset")
Work with RIDL datasets (datasets)
dataset_create(metadata) dataset_show(id) dataset_update(id, metadata) dataset_patch(id, metadata) dataset_delete(id)
dataset_create(metadata) dataset_show(id) dataset_update(id, metadata) dataset_patch(id, metadata) dataset_delete(id)
metadata |
Metadata created by |
id |
The id or name of the dataset. |
You must have the necessary permissions to create, edit, or delete datasets.
Note that several fields are required for dataset_create()
and dataset_update()
operations to succeed.
Consult dataset_metadata()
for the details.
For dataset_update()
/dataset_patch()
operations, it is recommended to
call dataset_show()
, make the desired changes to the result,
and then call dataset_update()
/dataset_patch()
with it.
The difference between the update and patch methods is that the patch will
perform an update of the provided parameters, while leaving all other
parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the metadata
.
The dataset.
#----- # test search in prod Sys.unsetenv("USE_UAT") # riddle::dataset_show(id = "unhcr-cbi-americas-quarterly-report") # # p <- riddle::dataset_show('rms_v4') # list_of_ressources <- p[["resources"]][[1]] # list_of_ressources #----- # Test create in UAT Sys.setenv(USE_UAT=1) m <- riddle::dataset_metadata(title = "Testing Riddle Interface", name = "riddleapitest", notes = "Making an API test", owner_org = "americas", ## be careful- all lower case!!! visibility = "public", geographies = "UNSPECIFIED", external_access_level = "open_access", data_collector = "Motor Trend", keywords = keywords[c("Environment", "Other")], unit_of_measurement = "car", data_collection_technique = "oth", archived = "False") # ## For the above to work - you need to make sure you have at least editor access # to the corresponding container - i.e. owner_org = "exercise-container" # p <- dataset_create(metadata = m) # The return value is a representation of the dataset we just created in # RIDL that you could inspect like any other R object. # p ## Now deleting this! # dataset_delete(id = p$id) #----- # Test create in prod Sys.unsetenv("USE_UAT") # m1 <- riddle::dataset_metadata(title = "Test", # name = "Test", # notes = "The data was extracted from kobo.", # owner_org = "americas-regional-dataset", # visibility = "public", # geographies = "UNSPECIFIED", # external_access_level = "open_access", # data_collector = "UNHCR", # keywords = keywords[c("Environment", "Other")], # unit_of_measurement = "car", # data_collection_technique = "oth", # archived = "False") # p <- riddle::dataset_create(metadata = m1)
#----- # test search in prod Sys.unsetenv("USE_UAT") # riddle::dataset_show(id = "unhcr-cbi-americas-quarterly-report") # # p <- riddle::dataset_show('rms_v4') # list_of_ressources <- p[["resources"]][[1]] # list_of_ressources #----- # Test create in UAT Sys.setenv(USE_UAT=1) m <- riddle::dataset_metadata(title = "Testing Riddle Interface", name = "riddleapitest", notes = "Making an API test", owner_org = "americas", ## be careful- all lower case!!! visibility = "public", geographies = "UNSPECIFIED", external_access_level = "open_access", data_collector = "Motor Trend", keywords = keywords[c("Environment", "Other")], unit_of_measurement = "car", data_collection_technique = "oth", archived = "False") # ## For the above to work - you need to make sure you have at least editor access # to the corresponding container - i.e. owner_org = "exercise-container" # p <- dataset_create(metadata = m) # The return value is a representation of the dataset we just created in # RIDL that you could inspect like any other R object. # p ## Now deleting this! # dataset_delete(id = p$id) #----- # Test create in prod Sys.unsetenv("USE_UAT") # m1 <- riddle::dataset_metadata(title = "Test", # name = "Test", # notes = "The data was extracted from kobo.", # owner_org = "americas-regional-dataset", # visibility = "public", # geographies = "UNSPECIFIED", # external_access_level = "open_access", # data_collector = "UNHCR", # keywords = keywords[c("Environment", "Other")], # unit_of_measurement = "car", # data_collection_technique = "oth", # archived = "False") # p <- riddle::dataset_create(metadata = m1)
This function create a metadata object used to then interact with the API
dataset_metadata( title = NULL, name = NULL, short_title = NULL, notes = NULL, tag_string = NULL, url = NULL, owner_org = NULL, geographies = "UNSPECIFIED", private = NULL, visibility = NULL, external_access_level = NULL, data_sensitivity = NULL, original_id = NULL, data_collector = NULL, date_range_start = NULL, date_range_end = NULL, keywords = NULL, unit_of_measurement = NULL, sampling_procedure = NULL, operational_purpose_of_data = NULL, `hxl-ated` = NULL, process_status = NULL, identifiability = NULL, geog_coverage = NULL, data_collection_technique = NULL, linked_datasets = NULL, archived = NULL, admin_notes = NULL, sampling_procedure_notes = NULL, response_rate_notes = NULL, data_collection_notes = NULL, weight_notes = NULL, clean_ops_notes = NULL, data_accs_notes = NULL, ddi = NULL, ... )
dataset_metadata( title = NULL, name = NULL, short_title = NULL, notes = NULL, tag_string = NULL, url = NULL, owner_org = NULL, geographies = "UNSPECIFIED", private = NULL, visibility = NULL, external_access_level = NULL, data_sensitivity = NULL, original_id = NULL, data_collector = NULL, date_range_start = NULL, date_range_end = NULL, keywords = NULL, unit_of_measurement = NULL, sampling_procedure = NULL, operational_purpose_of_data = NULL, `hxl-ated` = NULL, process_status = NULL, identifiability = NULL, geog_coverage = NULL, data_collection_technique = NULL, linked_datasets = NULL, archived = NULL, admin_notes = NULL, sampling_procedure_notes = NULL, response_rate_notes = NULL, data_collection_notes = NULL, weight_notes = NULL, clean_ops_notes = NULL, data_accs_notes = NULL, ddi = NULL, ... )
title |
Title(*) - Make sure to include: 'Survey name/title', 'Location', 'Country', and 'Year(s)' in the order indicated. |
name |
URL(*) - The canonical name of the dataset, eg. my-dataset. |
short_title |
Short title - eg. Short title for the project. |
notes |
Description(*) - Some useful notes about the data. Please include the number of observations. |
tag_string |
Tags - eg. economy, mental health, government. |
url |
Project URL - Website URL associated with this data project (if applicable). |
owner_org |
Data container(*) - Use the canonical name for the container (i.e. all lower case) for instance "americas" - not "Americas" - in case you are not using the right container you will receive.The id of the container can also be used |
geographies |
defaults is geographies - pulling from a webservice from geoserver |
private |
Visibility (Private/Public). |
visibility |
Internal Access Level(*). Allowed values: |
external_access_level |
External access level(*). Allowed values: |
data_sensitivity |
Data sensitivity - Apply to both Anonymized and Personally identifiable data. Allowed values: |
original_id |
Original ID - If the dataset already has an ID from the source org, DDI, etc... |
data_collector |
Data Collector(*) - Which organization owns / collected the data. Multiple values are allowed. |
date_range_start |
Date collection first date - Use dd/mm/yyyy format. |
date_range_end |
Date collection last date - Use dd/mm/yyyy format. |
keywords |
Topic classifications(*) - Tags useful for searching for the datasets. Multiple values are allowed. See |
unit_of_measurement |
Unit of measurement(*) - Unit of measurement / observation for the dataset. |
sampling_procedure |
Sampling Procedure. Multiple values are allowed. Allowed values: |
operational_purpose_of_data |
Operational purpose of data - Classification of the type of data contained in the file. Multiple values are allowed. Allowed values: |
process_status |
Dataset Process Status. Allowed values: |
identifiability |
Identifiability. Allowd values: |
geog_coverage |
Geographic Coverage - eg. National coverage, or name of the area, etc. |
data_collection_technique |
Data collection technique(*). Allowed values: |
linked_datasets |
Linked Datasets - Links to other RIDL datasets. It supports multiple selections. |
archived |
Archived(*) - Allows users to indicate if the dataset is archived or active. Allowed values: |
admin_notes |
Admin Notes - General. You can use Markdown formatting here. |
sampling_procedure_notes |
Admin Notes - Sampling Procedure. You can use Markdown formatting here. |
response_rate_notes |
Admin Notes - Response Rate. You can use Markdown formatting here. |
data_collection_notes |
Admin Notes - Data Collection. You can use Markdown formatting here. |
weight_notes |
Admin Notes - Weighting. You can use Markdown formatting here. |
clean_ops_notes |
Admin Notes - Cleaning. You can use Markdown formatting here. |
data_accs_notes |
Admin Notes - Access authority. You can use Markdown formatting here. |
ddi |
DDI. |
... |
ignored. |
`hxl-ated` |
HXL-ated. Allowed values: |
All arguments are of type character. Fields tag_string
, data_collector
, keywords
, sampling_procedure
, and operational_purpose_of_data
accept vectors of multiple values.
Fields marked with a (*) are required for dataset_create()
and dataset_update()
operations.
A list with the provided metadata.
m <- dataset_metadata(title = "Motor Trend Car Road Tests", name = "mtcars", notes = "The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).", owner_org = "americas", visibility = "public", geographies = "UNSPECIFIED", external_access_level = "open_access", data_collector = "Motor Trend", keywords = keywords[c("Environment", "Other")], unit_of_measurement = "car", data_collection_technique = "oth", archived = "False") m
m <- dataset_metadata(title = "Motor Trend Car Road Tests", name = "mtcars", notes = "The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).", owner_org = "americas", visibility = "public", geographies = "UNSPECIFIED", external_access_level = "open_access", data_collector = "Motor Trend", keywords = keywords[c("Environment", "Other")], unit_of_measurement = "car", data_collection_technique = "oth", archived = "False") m
Helper function to package API results as a tibble
dataset_tibblify(x)
dataset_tibblify(x)
x |
dataset as a list |
dataset
m <- dataset_metadata(title = "Motor Trend Car Road Tests", name = "mtcars", notes = "The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).", owner_org = "americas", ## becarefull- all lower case!!! visibility = "public", geographies = "UNSPECIFIED", external_access_level = "open_access", data_collector = "Motor Trend", keywords = keywords[c("Environment", "Other")], unit_of_measurement = "car", data_collection_technique = "oth", archived = "False") m1 <- dataset_tibblify(m) m1
m <- dataset_metadata(title = "Motor Trend Car Road Tests", name = "mtcars", notes = "The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).", owner_org = "americas", ## becarefull- all lower case!!! visibility = "public", geographies = "UNSPECIFIED", external_access_level = "open_access", data_collector = "Motor Trend", keywords = keywords[c("Environment", "Other")], unit_of_measurement = "car", data_collection_technique = "oth", archived = "False") m1 <- dataset_tibblify(m) m1
Provide a list of all child containers - including nested one - for a specific container
find_child_containers(parent, catalog)
find_child_containers(parent, catalog)
parent |
name of the parent container |
catalog |
daaframe object with a catalog of container produced by container_list() |
Be carefull - it's an expansive functions at it needs to parse the entire content of the server....
vector with all child container
#catalog <- container_list() # containerAmericas <- find_child_containers(parent = "americas", # catalog = catalog)
#catalog <- container_list() # containerAmericas <- find_child_containers(parent = "americas", # catalog = catalog)
As extracted from the dataset schema.
keywords
keywords
A named character vector mapping user-visible labels (the names) to their corresponding codes in the system (the values).
Work with RIDL resources (files)
resource_create(package_id, res_metadata) resource_update(id, res_metadata) resource_upload(package_id, res_metadata) resource_patch(id, res_metadata) resource_delete(id)
resource_create(package_id, res_metadata) resource_update(id, res_metadata) resource_upload(package_id, res_metadata) resource_patch(id, res_metadata) resource_delete(id)
package_id |
The id or name of the dataset to which this resource belongs to. |
res_metadata |
Metadata created by |
id |
The id or name of the resource. |
You must have the necessary permissions to create, edit, or delete datasets and their resources.
Note that several fields are required for resource_update()
, resource_create()
and
resource_update()
operations to succeed.
Consult resource_metadata()
for the details.
resource_update()
will check if the resource exists in the dataset.
If the resource name does not exist in the dataset, resource_update()
will
create a new resource. If the resource name already exists in the dataset,
resource_update()
will upload the resource and also increase the number
in the version.
For resource_update()
/resource_patch()
operations, it is recommended to
call resource_show()
, make the desired changes to the result, and then
call resource_update()
/resource_patch()
with it.
The difference between the update and patch methods is that the patch will
perform an update of the provided parameters, while leaving all other
parameters unchanged, whereas the update methods deletes all parameters
not explicitly provided in the metadata
.
metadata resource.
updated metadata resource.
upload metadata resource.
# ## Full example available with the fetch function.. #----- # ## Test search in prod # Sys.unsetenv("USE_UAT") # p <- dataset_search("rms_v4") # p # list_of_resources <- p[["resources"]][[1]] # knitr::kable(list_of_resources) #----- # ## Test search in uat # Sys.setenv(USE_UAT=1) # p <- dataset_search("tests") # p # ##take the first one # ridlid <- as.character(p[9, c("id")]) #----- # ## Test resource in UAT # Sys.setenv(USE_UAT=1) # m <- riddle::dataset_metadata(title = "Testing Riddle Interface", # name = "riddleapitest", # notes = "Making an API test", # owner_org = "americas", ## be careful- all lower case!!! # visibility = "public", # geographies = "UNSPECIFIED", # external_access_level = "open_access", # data_collector = "myself", # keywords = keywords[c("Environment", "Other")], # unit_of_measurement = "byte", # data_collection_technique = "oth", # archived = "False") # ## For the above to work - you need to make sure you have at least editor access # ## to the corresponding container - i.e. owner_org = "exercise-container" # p <- dataset_create(metadata = m) # p <- dataset_show('riddleapitest') # ## Now testing adding the file "resource.R" as an attachment # new_attachment <- riddle::resource_metadata(type = "attachment", # url = "resourceR", # upload = httr::upload_file(here::here("R","resource.R") ), # name = "Rscript", # format = "R", # file_type = "report", # version = "1", # visibility = "public" ) # r <- resource_create(package_id = p$id, res_metadata = new_attachment ) # resource_create(package_id = p$name, res_metadata = new_attachment ) # ## Like before, the return value is a tibble representation of the resource. # r # ## Another example with a data ressource # m <- riddle::resource_metadata(type = "data", # url = "mtcars.csv", # upload = httr::upload_file(system.file("extdata/mtcars.csv", package = "readr")), # name = "mtcars.csv", # format = "csv", # file_type = "microdata", # date_range_start = "1973-01-01", # date_range_end = "1973-12-31", # version = "1", # visibility = "public", # process_status = "raw", # identifiability = "anonymized_public") # r <- resource_create(package_id = p$id, # res_metadata = m ) # ## let's get again the details of the dataset we want to add the resource in.. # r # ## and now can search for it - checking it is correctly there... # resource_search("name:mtcarsriddle") # ## And once we’re done experimenting with the API, we should take down our # ## toy dataset since we don’t really need it on RIDL. # dataset_delete(p$id) # The return value is a representation of the dataset we just created in # RIDL that you could inspect like any other R object. # p ## Now deleting this! # dataset_delete(id = p$id)
# ## Full example available with the fetch function.. #----- # ## Test search in prod # Sys.unsetenv("USE_UAT") # p <- dataset_search("rms_v4") # p # list_of_resources <- p[["resources"]][[1]] # knitr::kable(list_of_resources) #----- # ## Test search in uat # Sys.setenv(USE_UAT=1) # p <- dataset_search("tests") # p # ##take the first one # ridlid <- as.character(p[9, c("id")]) #----- # ## Test resource in UAT # Sys.setenv(USE_UAT=1) # m <- riddle::dataset_metadata(title = "Testing Riddle Interface", # name = "riddleapitest", # notes = "Making an API test", # owner_org = "americas", ## be careful- all lower case!!! # visibility = "public", # geographies = "UNSPECIFIED", # external_access_level = "open_access", # data_collector = "myself", # keywords = keywords[c("Environment", "Other")], # unit_of_measurement = "byte", # data_collection_technique = "oth", # archived = "False") # ## For the above to work - you need to make sure you have at least editor access # ## to the corresponding container - i.e. owner_org = "exercise-container" # p <- dataset_create(metadata = m) # p <- dataset_show('riddleapitest') # ## Now testing adding the file "resource.R" as an attachment # new_attachment <- riddle::resource_metadata(type = "attachment", # url = "resourceR", # upload = httr::upload_file(here::here("R","resource.R") ), # name = "Rscript", # format = "R", # file_type = "report", # version = "1", # visibility = "public" ) # r <- resource_create(package_id = p$id, res_metadata = new_attachment ) # resource_create(package_id = p$name, res_metadata = new_attachment ) # ## Like before, the return value is a tibble representation of the resource. # r # ## Another example with a data ressource # m <- riddle::resource_metadata(type = "data", # url = "mtcars.csv", # upload = httr::upload_file(system.file("extdata/mtcars.csv", package = "readr")), # name = "mtcars.csv", # format = "csv", # file_type = "microdata", # date_range_start = "1973-01-01", # date_range_end = "1973-12-31", # version = "1", # visibility = "public", # process_status = "raw", # identifiability = "anonymized_public") # r <- resource_create(package_id = p$id, # res_metadata = m ) # ## let's get again the details of the dataset we want to add the resource in.. # r # ## and now can search for it - checking it is correctly there... # resource_search("name:mtcarsriddle") # ## And once we’re done experimenting with the API, we should take down our # ## toy dataset since we don’t really need it on RIDL. # dataset_delete(p$id) # The return value is a representation of the dataset we just created in # RIDL that you could inspect like any other R object. # p ## Now deleting this! # dataset_delete(id = p$id)
Fetch resource from RIDL
resource_fetch(url, path = tempfile())
resource_fetch(url, path = tempfile())
url |
The URL of the resource to fetch |
path |
Location to store the resource |
Path to the downloaded file
## Example 1: with a direct URL #----- # Test search in prod # Sys.unsetenv("USE_UAT") # resource_fetch(url = 'https://ridl.unhcr.org/dataset/a60f4b79-8acc-4893-8fb9-d52f94416b19/resource/daa2b9e4-bf97-4302-86a5-08bb62a5a937/download/df_age_2022.csv', # path = tempfile()) ## Example 2: Let's try to identify a resource - then fetch it locally and update it back... as from here # https://github.com/unhcr-americas/darien_gap_human_mobility/blob/main/report.Rmd#L38 # Sys.unsetenv("USE_UAT") # ## Get the dataset metadata based on its canonical name # p <- riddle::dataset_show('rms_v4') # ## Let's get the fifth resource within this dataset # test_ressources <- p[["resources"]][[1]] |> dplyr::slice(5) # # ## Download the resource locally in a file name file.. # resource_fetch(url = test_ressources$url, path = here::here("file")) # test_ressources$url # # Rebuild the metadata # m <- resource_metadata(type = test_ressources$type, #"data", # url = "df_gender_2020.csv", # upload = httr::upload_file(here::here("file")), # name = test_ressources$name, # "Irregular entries by gender in 2022", # format = test_ressources$format, #"csv", # file_type = test_ressources$file_type, #"microdata", # visibility = test_ressources$visibility, # "public", # date_range_start = test_ressources$date_range_start, # "2022-01-01", # date_range_end = test_ressources$date_range_end, #as.character(floor_date(today('America/Panama'), "month") - days(1)), #end day of last month # version = test_ressources$version, # "0", # process_status = test_ressources$process_status, #"anonymized", # identifiability = test_ressources$identifiability, #"anonymized_public" # ) #r <- resource_update(id = test_ressources$id, res_metadata = m)
## Example 1: with a direct URL #----- # Test search in prod # Sys.unsetenv("USE_UAT") # resource_fetch(url = 'https://ridl.unhcr.org/dataset/a60f4b79-8acc-4893-8fb9-d52f94416b19/resource/daa2b9e4-bf97-4302-86a5-08bb62a5a937/download/df_age_2022.csv', # path = tempfile()) ## Example 2: Let's try to identify a resource - then fetch it locally and update it back... as from here # https://github.com/unhcr-americas/darien_gap_human_mobility/blob/main/report.Rmd#L38 # Sys.unsetenv("USE_UAT") # ## Get the dataset metadata based on its canonical name # p <- riddle::dataset_show('rms_v4') # ## Let's get the fifth resource within this dataset # test_ressources <- p[["resources"]][[1]] |> dplyr::slice(5) # # ## Download the resource locally in a file name file.. # resource_fetch(url = test_ressources$url, path = here::here("file")) # test_ressources$url # # Rebuild the metadata # m <- resource_metadata(type = test_ressources$type, #"data", # url = "df_gender_2020.csv", # upload = httr::upload_file(here::here("file")), # name = test_ressources$name, # "Irregular entries by gender in 2022", # format = test_ressources$format, #"csv", # file_type = test_ressources$file_type, #"microdata", # visibility = test_ressources$visibility, # "public", # date_range_start = test_ressources$date_range_start, # "2022-01-01", # date_range_end = test_ressources$date_range_end, #as.character(floor_date(today('America/Panama'), "month") - days(1)), #end day of last month # version = test_ressources$version, # "0", # process_status = test_ressources$process_status, #"anonymized", # identifiability = test_ressources$identifiability, #"anonymized_public" # ) #r <- resource_update(id = test_ressources$id, res_metadata = m)
This functions create the resource metadata
resource_metadata( type = NULL, url = NULL, name = NULL, description = NULL, format = NULL, file_type = NULL, date_range_start = NULL, date_range_end = NULL, upload = NULL, visibility = NULL, version = NULL, `hxl-ated` = NULL, process_status = NULL, identifiability = NULL, ... )
resource_metadata( type = NULL, url = NULL, name = NULL, description = NULL, format = NULL, file_type = NULL, date_range_start = NULL, date_range_end = NULL, upload = NULL, visibility = NULL, version = NULL, `hxl-ated` = NULL, process_status = NULL, identifiability = NULL, ... )
type |
Resource type(*) - The kind of file you want to upload. Allowed values: |
url |
Upload - The file name as it will be recorded in the system. |
name |
Name - eg. January 2011 Gold Prices. |
description |
Description - Some usefule notes about the data. |
format |
File format - eg. CSV, XML, or JSON. |
file_type |
File type(*) - Indicates what is contained in the file. Allowed values: |
date_range_start |
Data collection first date(*) - Use yyyy-mm-dd format. |
date_range_end |
Data collection last date(*) - Use yyyy-mm-dd format. |
upload |
File to upload. Passed using |
visibility |
should be either |
version |
Version(*). |
process_status |
File process status(*) - Indicates the processing stage of the data. 'Raw' means that the data has not been cleaned since collection. 'In process' means that it is being cleaned. 'Final' means that the dataset is final and ready for use in analytical products. Allowed valued: |
identifiability |
Identifiability(*) - Indicates if personally identifiable data is contained in the dataset. Allowed values: |
... |
ignored. |
`hxl-ated` |
HXL-ated. Allowed values: |
All arguments are of type character.
Fields marked with a (*) are required for resource_create()
and resource_update()
operations.
A list with the provided metadata.
#resource_metadata() m <- riddle::resource_metadata(type = "data", url = "mtcars.csv", name = "mtcars.csv", format = "csv", file_type = "microdata", date_range_start = "1973-01-01", date_range_end = "1973-12-31", version = "1", visibility = "public", process_status = "raw", identifiability = "anonymized_public") m
#resource_metadata() m <- riddle::resource_metadata(type = "data", url = "mtcars.csv", name = "mtcars.csv", format = "csv", file_type = "microdata", date_range_start = "1973-01-01", date_range_end = "1973-12-31", version = "1", visibility = "public", process_status = "raw", identifiability = "anonymized_public") m
Helper function to package API results as a tibble
resource_tibblify(x)
resource_tibblify(x)
x |
list |
list tiblified
m <- riddle::resource_metadata(type = "data", url = "mtcars.csv", # upload = httr::upload_file(system.file("extdata/mtcars.csv", package = "readr")), name = "mtcars.csv", format = "csv", file_type = "microdata", date_range_start = "1973-01-01", date_range_end = "1973-12-31", version = "1", visibility = "public", process_status = "raw", identifiability = "anonymized_public") m1 <- riddle::resource_tibblify(m) m1
m <- riddle::resource_metadata(type = "data", url = "mtcars.csv", # upload = httr::upload_file(system.file("extdata/mtcars.csv", package = "readr")), name = "mtcars.csv", format = "csv", file_type = "microdata", date_range_start = "1973-01-01", date_range_end = "1973-12-31", version = "1", visibility = "public", process_status = "raw", identifiability = "anonymized_public") m1 <- riddle::resource_tibblify(m) m1
Archive all crunching files in RIDL
riddle_notebook(ridl, datafolder, namethisfile, visibility = "public")
riddle_notebook(ridl, datafolder, namethisfile, visibility = "public")
ridl |
ridl container where the resources should be added |
datafolder |
folder where the data used by the notebook are stored |
namethisfile |
all files are archived based on the name of notebook you created. The function automatically get the name of the notebook where it is run from, using basename(rstudioapi::getSourceEditorContext()$path ) |
visibility |
can be "public" per default or set to private for obscure reasons.. |
RIDL is UNHCR instance of a CKAN server and is accessible for UNHCR staff at https://ridl.unhcr.org . It is designed to keep track and document dataset within an organisation.
You conveniently archive there your generated report and save the work you did on a notebook: As you have been working on the data, you want to keep track of it and save your work in a place where it can be useful for other people and available for peer review and quality assessment.
The function saves within the the RIDL container you used to get the data from the following resources:
the generated report
the source notebook
The function behavior is the following -
Get metadata from the RIDL dataset
check if the resources to be uploaded is already shared based on the name
if already there update, if not create
The function relies on # install.packages("pak") # pak::pkg_install("edouard-legoupil/riddle")
nothing all analysis files are added as a resources
## Time to archive your work once done!! # used in the RIDL_Notebook markdown template in the package # if( params$publish == "yes"){ # namethisfile = basename(rstudioapi::getSourceEditorContext()$path ) # riddle_notebook(ridl = params$ridl, # datafolder = params$datafolder, # namethisfile = namethisfile , # visibility = params$visibility ) }
## Time to archive your work once done!! # used in the RIDL_Notebook markdown template in the package # if( params$publish == "yes"){ # namethisfile = basename(rstudioapi::getSourceEditorContext()$path ) # riddle_notebook(ridl = params$ridl, # datafolder = params$datafolder, # namethisfile = namethisfile , # visibility = params$visibility ) }
Helper function to make API calls. Calls includes the 10 following actions:
ridl(action, ..., .encoding = "json", verbose = FALSE)
ridl(action, ..., .encoding = "json", verbose = FALSE)
action |
Operation to execute. See CKAN's API documentation for details. |
... |
whatever is needed |
.encoding |
HTTP POST encoding to use - one of |
verbose |
TRUE FALSE to display info on the console about the API call |
On dataset
"package_create"
"package_update"
"package_patch"
"package_delete"
"package_search"
On resource
"resource_create"
"resource_update"
"resource_patch"
"resource_delete"
"resource_search"
The package works with both the production and UAT instances of RIDL.
To use the UAT version, run Sys.setenv(USE_UAT=1)
before calling any functions
from the package.
To go back to the production instance, call Sys.unsetenv("USE_UAT")
.
httr::response
object with the result of the call.
# ridl(action ="package_search", as.list("cbi"))
# ridl(action ="package_search", as.list("cbi"))
Searches for datasets and resources satisfying a given criteria.
dataset_search(q = NULL, rows = NULL, start = NULL) resource_search(query = NULL, rows = NULL, start = NULL)
dataset_search(q = NULL, rows = NULL, start = NULL) resource_search(query = NULL, rows = NULL, start = NULL)
q , query
|
The search query. |
rows |
The maximum number of matching rows (datasets) to return. (optional, default: 10, upper limit: 1000) |
start |
The offset in the complete result for where the set of returned datasets should begin. |
A tibble with the search results.
tibble with list of related resource.
#----- # Test search in prod # Sys.unsetenv("USE_UAT") # searching <- "cbi" # p <- dataset_search(q = searching, rows = 30) # p #----- # Test create in UAT Sys.setenv(USE_UAT=1) # p2 <- dataset_search(q = "testedouard2")
#----- # Test search in prod # Sys.unsetenv("USE_UAT") # searching <- "cbi" # p <- dataset_search(q = searching, rows = 30) # p #----- # Test create in UAT Sys.setenv(USE_UAT=1) # p2 <- dataset_search(q = "testedouard2")
Generate a RIDL factsheet
summary_report(container = "Americas")
summary_report(container = "Americas")
container |
list of container to generate the factsheet to generate |
# summary_report(year = 2022, # region = "Americas")
# summary_report(year = 2022, # region = "Americas")